

A münchenonimine-based method for the synthesis of 3,6-diaryl-2(1*H*)-pyridones

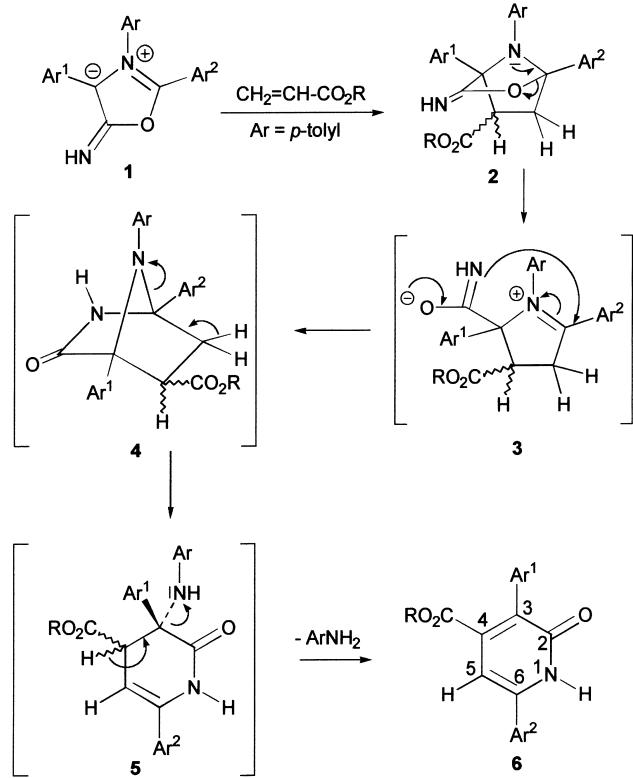
Sylvain Burger^a, Karin Monnier-Jobé^{a*}, Sandrine Perrin^b and Bernard Laude^a

J. Chem. Research (S),
2002, 355–356
J. Chem. Research (M),
2002, 0801–0828

^a Laboratoire de Chimie des Matériaux et Interfaces-Pôle Matériaux moléculaires, UFR Sciences et Techniques, F-25030 Besançon, France

^b Laboratoire de Chimie Organique Analytique, Institut de Chimie de l'Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland

A new and convenient procedure for the preparation of 3,6-diaryl-2(1*H*)-pyridones via 1,3-dipolar cycloaddition of münchenonimines to acrylic esters is described.

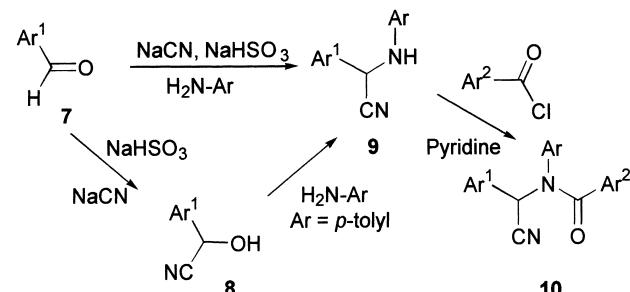

Keywords: mesoionic compounds, münchenonimines, cycloaddition, 2-pyridones

The 2-*H*-pyridone ring is an important moiety of biologically active compounds and structurally interesting molecules.^{1–9} Therefore there are numerous known methods for their synthesis^{10–11} and new procedures are continually being developed.^{12–17}

Our previous studies^{29,30} on the reactivity of an open-chain analogue of Reissert compound hydrofluoroborate salt **1aA** ($\text{Ar}^1 = \text{Ar}^2 = \text{Ph}$) with ethyl acrylate have led us to the synthesis of ethyl 3,6-diphenyl-2-*H*-pyridone-4-carboxylate **6aAE** ($\text{Ar}^1 = \text{Ar}^2 = \text{Ph}$, $\text{R} = \text{Et}$) (Scheme 1). The structural advantage and the convenient synthetic method of this compound led us to look for the generalisation of this procedure and we report here a more complete study of the scope of the process.

The cornerstone of our synthetic plan is the [3+2] cycloaddition of a münchenonimine intermediate (Scheme 1).

The mesoionic species **1** undergoes 1,3-dipolar cycloaddition with an acrylate ester to give the [3+2] cycloadduct **2**. The $\text{HN}=\text{C}-\text{O}$ bridge next opens, being assisted by the nitrogen electron pair of the pyrrolidine moiety, giving the transient

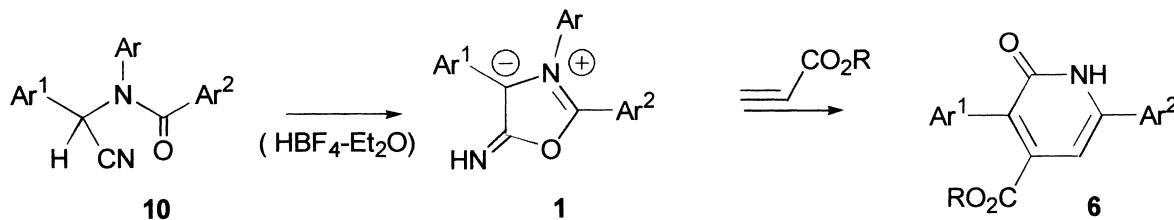

Scheme 1 Mechanism of formation of the pyridones (6).

* To receive any correspondence. E-mail: karin.monnier-jobe@univ-fcomte.fr

species **3**. This last rearranges to the bicyclic intermediate **4**, opening of which gives the 3,4-dihydro-2(1*H*)-pyridone **5**, precursor of the final 2(1*H*)-pyridone **6**, formed by elimination of a molecule of *p*-toluidine.

Moreover, since the heterocyclic ring bears two aryl groups *para*-disposed at positions 3 and 6, it seemed of particular interest to introduce an electron-donating group (EDG) on one aryl moiety and an electron-withdrawing group (EWG) on the other. Our goal was based on the insertion of a 2(1*H*)-pyridone ring as transmitting (central) ring in order to build an active Non Linear Optics push-pull molecule.

The general procedure for the preparation of the open-chain analogues (**10**) of Reissert compounds involved first the synthesis of an aminonitrile (**9**) by condensation of a primary amine with a cyanohydrin (**8**). The preparation of these aminonitriles was accomplished by two methods (Scheme 2).^{43–45}



Scheme 2 Synthesis of 2-(N-aryl-N-p-tolylamino) arylacetonitriles (10).

The aminonitrile **9** was then treated with an acid chloride to form the α -acylaminonitrile (a Reissert analogue) **10** (Scheme 2). Each Reissert salt analogue (**1**) was prepared (Scheme 3) by dissolving the corresponding Reissert analogue, a 2-(*N*-aryl-*p*-tolylamino)arylacetonitrile **10**, in dry ether and adding a 54 % ethereal solution of fluoroboric acid.

The first step of our strategy cannot be extended to arylaldehydes bearing an electron-withdrawing substituent, because under these conditions they reacted in only a very poor yield. So, we started only with benzaldehyde and arylaldehydes bearing electron-donor substituents to obtain the best results. The succeeding steps, the preparation of the open-chain analogues of Reissert compounds and of their tetrafluoroborate salts, afforded good yields. The last reaction, the 1,3-dipolar cycloaddition and rearrangement, gave pyridones (**6**) in yields of between 36 and 85 %.

We have shown that a range of highly substituted 2(1*H*)-pyridones can be assembled using the [3+2] cycloaddition of 2-(*N*-aryl-*p*-tolylamino)arylacetonitrile tetrafluoroborate

Scheme 3 Synthesis of 2-pyridones (6) via munchnonimines (1).

Table 1 Pyridones (6) synthesised via munchnonimines (1)

Ar ¹	Ar ²	CO ₂ R	Pyridone
Phenyl a	Phenyl A	Ethyl E	6aAE ^{29,30}
<i>p</i> -Anisyl b	Phenyl A	Ethyl E	6bAE
<i>m</i> -Anisyl c	Phenyl A	Ethyl E	6cAE
<i>p</i> -Chlorophenyl d	Phenyl A	Ethyl E	6dAE
Phenyl a	<i>p</i> -Anisyl B	Ethyl E	6aBE
<i>p</i> -Anisyl b	<i>p</i> -Anisyl B	Ethyl E	6bBE
<i>m</i> -Anisyl c	<i>p</i> -Anisyl B	Ethyl E	6cBE
Phenyl a	<i>p</i> -Tolyl C	Ethyl E	6aCE
<i>p</i> -Anisyl b	<i>p</i> -Tolyl C	Ethyl E	6bCE
<i>m</i> -Anisyl c	<i>p</i> -Tolyl C	Ethyl E	6cCE
<i>m</i> -Tolyl e	<i>p</i> -Tolyl C	Ethyl E	6eCE
Phenyl a	<i>p</i> -Nitrophenyl D	Ethyl E	6aDE
<i>p</i> -Anisyl b	<i>p</i> -Nitrophenyl D	Ethyl E	6bDE
<i>m</i> -Anisyl c	<i>p</i> -Nitrophenyl D	Ethyl E	6cDE
<i>p</i> -Chlorophenyl d	<i>p</i> -Nitrophenyl D	Ethyl E	6dDE
<i>m</i> -Tolyl e	<i>p</i> -Nitrophenyl D	Ethyl E	6eDE
2-Thienyl f	<i>p</i> -Nitrophenyl D	Hexyl H	6fDH
<i>p</i> -Dimethylaminophenyl g	<i>p</i> -Nitrophenyl D	Hexyl H	6gDH
<i>p</i> -n-Propyloxyphenyl h	<i>p</i> -Nitrophenyl D	Ethyl E	6hDE
<i>p</i> -n-Propyloxyphenyl h	<i>p</i> -Nitrophenyl D	Hexyl H	6hDH
<i>p</i> -Methylthiophenyl i	<i>p</i> -Nitrophenyl D	Hexyl H	6iDH
<i>p</i> -n-Hexyloxy k	<i>p</i> -Nitrophenyl D	Hexyl H	6kDH
<i>p</i> -Ethoxyphenyl l	<i>p</i> -Nitrophenyl D	Ethyl E	6lDE
2-Thienyl f	<i>p</i> -Cyanophenyl E	Hexyl H	6fEH
<i>p</i> -n-Propyloxyphenyl h	<i>p</i> -Cyanophenyl E	Hexyl H	6hEH
<i>p</i> -Methylthiophenyl i	<i>p</i> -Cyanophenyl E	Allyl A	6iEA
<i>p</i> -Methylthiophenyl i	<i>p</i> -Cyanophenyl E	Ethyl E	6iEH
<i>p</i> -Allyloxyphenyl j	<i>p</i> -Cyanophenyl E	Ethyl E	6jEH
<i>p</i> -Ethoxyphenyl l	<i>p</i> -Cyanophenyl E	Hexyl H	6lEH

salts (munchnonimine hydrofluoroborates – open-chain Reissert salt analogues). This efficient chemical pathway allows versatile functionalisation with a large choice of substituents and the possibility to develop polymers and sol-gel process. The polymerisation procedure and the sol-gel strategy are under current investigation.

Techniques used: IR, 1H NMR

References: 51

Schemes: 3

Table: 1

Received 16 January 2002; accepted 9 June 2002
Paper 02/1208

References cited in this synopsis

- K. Konno, K. Hashimoto, Y. Ohfune, H. Shimara, and T. Matsumoto, *J. Am. Chem. Soc.*, 1988, **110**, 4807.
- T.R. Kelly, S. Bell, N. Ohashi, and J. Armstrong-Chong, *J. Am. Chem. Soc.*, 1988, **110**, 6471.
- G. Pattenden and G.F. Smith, *Tetrahedron Lett.*, 1990, **31**, 6557.
- D.P. Curran and H. Liu, *J. Am. Chem. Soc.*, 1992, **114**, 5863.
- C.A. Veale, P.R. Bernstein, C. Bryant, C. Ceccarelli, J.R. Damewood Jr., R. Early, S. W. Feeney, B. Gomes, B.J. Kosmider, G.B. Steelman, R.M. Thomas, E.P. Vacek, J.C. Williams, D.J. Wolanin, and S. Woolson, *J. Med. Chem.*, 1995, **38**, 98.
- A.P. Kozikowski, G. Campiani, L-Q. Sun, S. Wang, A. Saxena, and B. P. Doctor, *J. Am. Chem. Soc.*, 1996, **118**, 11357.
- D.R. Williams, P.D. Lowder, and Y-G. Gu, *Tetrahedron Lett.*, 1997, **38**, 327.
- S.J. Brickner, *Chem. Ind. (London)*, 1997, 131.
- M. Rubiralta, E. Giralt, and A. Diez, *Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives*, Elsevier, Amsterdam, 1991.
- H. Meislich, in *Pyridine and its Derivatives*, ed. E. Klingsberg, Interscience, New York, 1962. Vol. 3, pp. 509-890.
- G. Jones, in *Comprehensive Heterocyclic Chemistry II*, eds A. R. Katritzky, C.W. Rees, and E.F.V. Scriven, Pergamon Press, Oxford, 1996. Vol.5.
- R. Jain, F. Roshangar, and M.A. Ciufolini, *Tetrahedron Lett.*, 1995, **36**, 3307.
- Y. Tohda, T. Yanagidani, S.-i. Hiramatsu, N. Nishiwaki, K. Tani, and M. Ariga, *Bull. Chem. Soc. Japan*, 1997, **70**, 2781.
- I. Collins and J.L. Castro, *Tetrahedron Lett.*, 1999, **40**, 4069.
- S.M. Sheehan and A. Padwa, *J. Org. Chem.*, 1997, **62**, 438.
- A. Padwa, S.M. Sheehan, and C. S. Straub, *J. Org. Chem.*, 1999, **64**, 8648.
- E.M. Brun, S. Gil, R. Mestres, and M. Parra, *Synthesis*, 2000, 273.
- S. Perrin, K. Monnier, B. Laude, M.M. Kubicki, and O. Blacque, *Tetrahedron Lett.*, 1998, **39**, 1753.
- S. Perrin, K. Monnier, B. Laude, M.M. Kubicki, and O. Blacque, *Eur. J. Org. Chem.*, 1999, 297.